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Abstract 

A closed form for the parameterization of the error matrix that arises due to Mul- 
tiple Coulomb Scattering is described. The errors depend on only one angle, rather 
than the two quasi-independent projected angles which are commonly used. 

Introduction 

Multiple Coulomb Scattering (MS) introduces small deviations into the track parameters 
compared with those of an unscattered track ( i.e a particle traversing the vacuum). The 
effect is usually described by an angle, 0 us [l] and a corresponding lateral shift in the 
position, s [2]. It is usually assumed that the error on the physical process of measurement 
(the resolution) and the MS errors are independent. Also note that the MS process can be 
decoupled from energy losses and thus, does not affect the momentum. 

MS is a stochastic process, namely, the probability for a scattering event (denote by the 
state X(t) in the phase space) to take place at time t, (site ki) depends only on the physical 
condition in the immediate past at time t < t, (site kimI). The stochastic nature of MS is 
described as a convolution of local probability density functions satisfying the Chapman - 
Kolmogorov identity, 

w(X,w?a) = jwl(x,tlE,u)luz(~,ulY,s)d~, 

where wz(X, tlY, s)dX is the probability that the event X < X(t) 5 X + dX occurs at time 
t, given that X(s) = Y for t > s. The subscript “2” emphasizes the fact that only the state 
in the immediate past matters. Following the spirit of the Chapman - Kolmogorov identity, 
it is most suitable to treat MS errors in a local way, convoluting their probability density 
functions along the particles trajectory. 

This article deals with the estimation of the errors on track parameters due to MS, in 
the milieu of track reconstruction for high energy physics (HEP) detectors. The article is 
organized in two sections. In the first section we describe the concept of the local tracking 
method [5] which is lately used in some of the largest HEP experiments, such as DELPHI 
and ZEUS. In the second section we describe a parameteriaation of the MS error and outline 
construction of the error matrix. 
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1 The concept of local tracking 

A track is locally defined (at a fixed plane of measurement), by five parameters; two coordi- 
nates (i.e. two measurements at that fixed plane), two direction cosines (or angles), and the 
radius of curvature (when there is a magnetic field), which is proportional to the moment,rlm. 
In Cartesian coordinates, one has a five dimensional vector, v = (z,k:, y,i, b). Note how- 
ever, that the parameteriaation of the track and the errors of its parameters in one system 
can always be transformed to another system appropriate to the detector geometry. It is 
thus sufficient to evaluate the errors for one set of parameters, for example in the Cartesian 
parameterization. 

The track model, F(V), is a function of the track parameters, and describes the trajectory 
of the particle in the detector. In the case of nonlinearities (the presence of a magnetic field), 
the analytical function F(v) can be linearized at a given point in space a,. The linearized 
track model, f(v), is expressed as [3] 

f(V) = F(n,) t $g%m - VI..). 

Propagation of the track from a measured location a to the next measured location b can be 
m described by a matrix derived from the track model, @$ = ar;,b. In the case of nonlinearities, 

it may be approximated by the linearized track model, f(V). 
In a similar fashion, errors that occur locally in location a are propagated to location 

b using the same propagation matrix, @$ [3]. The propagation of errors is done using the 
following relation: 

xb = q?‘y@tP P 1.9 ,* (1) 

where $’ is the transpose of a$. The resulting matrix, Ck, contains the error variance and 
covariance, estimated at location a, as they are propagated to location b. 

In order to estimate (locally) the MS effect on the track parameters, it is necessary to 
evaluate the error variance and covariance in a given plane of measurement (location b) due 
to the traversing of a scattering material with a given thickness, L, and radiation length 
L, that is located between the b and a planes of measurement. The propagation of these 
variance and covariance can be done using equation 1. For a complete estimation of the error 
matrix, the MS error variance and covariance are added to the measurement error matrix 
and the resulting matrix is propagated across the measurement planes. 

This concept is best realized in the Kalman filter approach to track reconstruction in 
HEP detectors [6]. In the Kalman filter framework, one estimates the track parameters and 
their errors locally, adds to them the MS error matrix and then propagates both the track 
parameters and the resulting error matrix to the next plane of the detector. The track 
parameters are then updated by a fit procedure resulting in a new set of parameters for 
that plane. In this way, one optimally follows the particle trajectory in the detector and the 
errors associated with it. 
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2 Parameterization of the MS error 

Next we derive a parameterization of the errors of the track parameters due to MS, in terms 
of the scattering angle O”“, and outline the calculation of the error variance and covariance 
of the tra,ck parameters. 

Let u6 break the trajectory of the particle traversing the material in the detector into 
a series of quasi straight lines, (each with an infinite radius of curvature), such that the 
trajectory that associates the two locations a and b can be described to first order by the 
direction cosines at a, r&O, where i runs from 1 to 3. 

The effect of MS is to scatter the track such that instead of reaching location b, the 
particle is most probably found in a cone with an opening angle 0”” around the original 
line, & To first order, the error8 of the direction cosines are 6ii”l such that the scattered 
line is now defined by the new (scattered) direction cosines: 

i .a’ , zr &” + saia (2) 

The intersection of the two lines in a plane defines an angle 0, with a variance which is equal 
to the projected MS angle [2]: 

@AiS 
8, = - 

43 
(3) 

The cosine of the angle of intersection 6’, is given by: 

cos(e,) = C ij” . z^i”’ = F ii” ’ (Si” + 6di”) = 1 + C Gi” ’ 66;” 

For 8, small enough, the cosine can be expressed as 

(4) 

Parameterizing the new direction cosines as a Taylor expansion of the original ones we have 

$9’ , = Gi” - 68i 1 - Xi J---z 
(6) 

where the parameters 60; are small angular deviations of the direction angles. In an isotropic 
material it is legitimate to assume that the 66’i are equal on average i.e. 66i = 66’j = 66’k = 60. 
The new direction cosines are required to satisfy orthonormality. 

c &“’ .&a’ = =-j-[&G . 2^;” - 26&q 1 - Zi - 4: + @(l - &i”‘)] = 1 (7) 

Solving equation 7 for 6!3 we have: 

6e = C ~iJ1 - ~ia2 

Substitution of equation 8 in equation 4 with 6ii” = -6041 - CiR2, yields a parameterization 
of 66’ in terms of the projected scattering angle 0,: 



Hence, we identify the errors on the direction cosines: 

&&” =-!LJ~-;P' (10) 

as a function of the MS angle. Using this expression one cs,n calculate the error variance: 

O& = (%68)2 = !%(I _ &2) 

and the covariance of the direction cosines: 

otirij = ~se?&!6e = ; Jtl _ siy(l _ sjj”) 

The errors of the parameters z; are expressed by 

6x; = ;6gir; = 

Using equations 10 and 13, one can calculate the remaining error variance: 

and covariance: 

bZiUSj = ~se~se = $r,;ljJ(l - $f)(l - 2:) 

azi~tj = $66’$$ = + Jp _ .pjtl _ 3i;j 

(11) 

(12) 

(13) 

(14) 

(15) 

PfJ) 
Let us emphasize again that the full covariance matrix, I$‘*, can be transformed to another 
set of parameters rather than the Cartesian coordinates and the direction cosines. Using the 
“propagation error formula” [4] 

Km(f) z 5 $)$&h(Z) 

one can express the errors on any other parameterieation, f, of the particle trajectory. 
The propagation of the local error matrix, I$“‘, is straight forward for the linear case. 

A linear track model at a given plane z = .zk can be propagated to the following plane, 
t = zk+, , with the following transfer matrix: 

I I 
1\/lf.P; ; 1\/lf.P; ; 
0 0 

qnz,;,g = o qnz,;,g = o 
0 0 0 0 
0 0 

l+ l+ 
0 0 

(18) 
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where LYZ = zk+l -zb is the distance between the k, k+l planes. Assuming that the direction 
cosines do not change drastically along the particle trajectory from z,, to z”, equation 1 is 
applied N times along the path, L = N iI .z = t, - z,, such that 

C” = @“V”“$J?Y I u :J ,I (19) 
Note that due to the block diagonal form of the @ matrix the off diagonal terms are given 
by: 

%,3-L = 
NA% 2” - %I 

~l-$“-$z= d/1-$-g 

Equations 19 and 20 confirm the intuitive expectation of a linear dependence of the errors 
on the path length , L. However, if a magnetic field is present one can still use equation 19 
for short enough paths i.e. cords that approximate the arc, for which the average change in 
the direction cosines is tolerable (small compared to the MS errors). One then propagates 
the error matrices of a given cord at the break point to the next cord, using the direction 
cosines of this cord etc. 

To summarize, we have shown how the MS error may be parameterieed using only one 
variable, the scattering angle O”“, which is evaluated in the theory of MS. Using this 
parameterization, a full error matrix can be constructed locally and propagated across the 
detector. This approach is a natural consequence of the stochastic character of MS. 
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